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THE FUNDAMENTALS OF THE 3914A AND 3371A EMISSIONS FOR
N AND AIR PLASMA DIAGNOSTICS

1. INTRODUCTION

The interaction of an electron beam with gaseous elements generates a
plasma and characteristic emission spectra which are unique to each element.
The emission is over a wide range of the electromagnetic radiation, from
extreme ultraviolet to long wave infrared, consisting of band, line, and
continuum emissions. Such a spectrum provides important information for
measuring various plasma parameters without perturbing the state of the
plasma.

Emission from an air plasma, is a complex phenomena arising from a host
of excitation mechanisms. These mechanisms are numerous and are reviewed
.briefly. However, the main emphasis will be on two molecular bands at 3371A
and 39142 . Their excitation mechanisms and other processes that affect their
intensities are discussed in detail. The basic understanding of these
mechanisms provides the tools for the plasma modelling and its diagnostics.

2. EMISSION PROCESSES IN AIR

Emission from air falls into bands, lines and continuum emissions. The
processes that lead to the band emissions are
1. Simultaneous Excitation and Ionfization L

e+ My » (M"z')* + 2e (1)

Examples are: the First Negative and Meinel Bands of N;

2. Direct Excitation

- e+ My » (Mz)* + e (2)

. Manuscript submitted August 24, 19832.
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Examples of this excitation are the First and Second Positive Band

Systems of Ny.
3. Ground State Vibrational Excitation

e + MK + Mi + e (3)

e+ ) » D + e (%)
Examples are infrared bands of NO and Not.
4. Atom - Atom Interchange or Chemiluminescence

K*+ My + H(* +M (S)

Examples are infrared emissions from NO.

In the preceding equations Rf and Mz* indicate excited atoms and
molecules, respectively. M; is a vibrationally excited molecule. It should
be noted, however, that the electronically excited molecules in reactions 1
and 2 can be vibrationally excited as well.

The line emissions arise when an excited atom or atomic ion is generated

and that the excitation energy or part of it is emitted as radiation. These

excited states are produced by
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1. Dissociative Excitation and Dissociative Ionization With

Excitation

e+M2+(M)*+M+e (6)
e+M2~»(M)*+M++2e (7)
e+ M; * M+ (ﬁ+)* + 2e (8)

Examples for the first process is the emissions at 8447A from the

dissociation of 0y. Emissions at 8210A from N and 50032 from N

due to dissociative and ionization excitation of N2 illustrate

emission processes in reactions 7 and 8, respectively.

2. Direct Excitation
*
e+ M+M + e 9)
+ + %
e+ M + (M) +e (10)

3. Dissociative Recombination

*
e+ Kz +M +M (11)
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fﬁ 4. Radfative and Collisional Recombination
7
A e+ M + M +nv (12)
. + «
. e+e+M +M +e+ hv (13)
4 *
: e+M+M +M +M+hv (14)
\ The continuum emission, on the other hand, results from free - free
3 transitions of the thermal electrons in the field of the atomic and molecular
'? ions as well as in the field of the atoms and molecules e. g.
e+ M s e+ +ny (15)
' + +
Ei e+ M, +e+ M +hv (16)
? e+ M+e+ M+ hv (17)
g e+ M; e+ Mpg+ hv (18)
. 3. SELECTED BANDS FOR PLASMA DIAGNOSTICS
:% The nitrogen molecule, Ny and its ion, ﬁ; have numerous bands which
= emit radiation in the ultraviolet, visible and infrared. Many of these bands
can be used for diagnostics of Ny and air plasmas. However, two specific
;: bands shown in Figure 1, the first negative and the second positive, have
K often been utilized for plasma diagnostics 2-8 and as a measure of electron

a
*. o

snd x-ray enmergy deposition in N, and Alr. Therefore, a review of the basic

3 ™
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Fig. 1 — The partial potential energy diagram of N, and N3. Partial emissions in the
second position and first negative bands are indicated.




physical processes affecting their excitations and decays is in order.

3.1 THE (0,0) BAND OF THE FIRST NEGATIVE BANDS SYSTEM OF NI_

The first negative bands system of NI corresponds to the

th (;) * xzz (;‘) transitions. The transition rates from various B-state
vibrational levels have been calculated }0:1! and measured 12:13. me
transitions from v=0 have strong emissions at 3914A, 4278A and 4708A which
correspond to the (0,0), (0,1) and (0,2) bands, respectively. The lifetime of
the B (;-0) state has been meagsured by many investigators and a weighted
avetage14 is 62.5 x 1079 sec. using the Franck-Condon factor!! for the (0,0)
transition and the weighted average for the lifetime of the ;-0 state, one
obtains a rate of 1.04 x 10’ sec.”! for the (0,0) transition at 3914A.

3.1.1 THE QUENCHING OF THE N (B, v=0)

; The NI (B, v=0) state is quenched in collisions with N, and 0, according

to the following two body processes:
+ +
N2 (B,0) + Np + Nz (X) + N3 (19)
+ +
N2 (B,0) + 02 + N3 (X) + 02 (20)

There is evidence 15 that the (B,0) state is also quenched by the following

three body process
- + +
2 N2 (B,0) + M + 0 + N3 (X) + Ny + 0p (21)

where M indicates N, and/or 0y, i.e. the third body in this reaction must be

0,.

The rate coefficient for Reactions (19) and (20) have been measured by
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Mitchell}!3, Brucklehurst and Downing!®, Hirsh et all7, and Mackay and
Marchls. The last measurement18 which measures the quenching by Njyonly gives
two different values which differ by 40% and thus are not included in Table 1

where the other measurements are summarized.

Table 1:

2 »
The Quenching Coefficient for the B I (v=0) State (in Torr™!)

Ref. 15 Ref. 16 Ref. 17
N 0.96 + 0.09 © 0.85 % 0.3 0.95 % 0.05
0, 1.56 + 0.15(*) 0.84 + 0.3 1.5 £ 0.6

A weighted averaée for the quenching rate coefficients of the (;-0) state by
N, and 0, are 4.6x10710 cm3/sec and 6.5x10710 cm3/sec, respectively.

As for the three body quenching process given by Equation (21),
Hitchellls gives a value of 3.1::10-29 cm3/sec for both 0, and N,.

3.1.2 THE EXCITATION PROCESSES OF N;(B, v=0)

The N;(B) state 1s excited by the direct ionization and excitation
process (See Eq. 1) whenever the incident electron has an energy above the
threshold energy for twme process (»18.8eV) . Since the (0,0) transition at
39144 is a well known auroral emissionlg, it has attracted considerable
interest and its cross section has been measured by many investigators. The
; emission cross section at 3914A, for the direct excitation and ionization of

? Ny, 1s shown in Figure 2, based mainly on the data of reference 27.

(*) Data for 0, was obtained from air and N, data
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However, the BZZ(;) state can be excited by electron impact from the

nd state of the nitrogen ion, N; (x,;‘), where the excitation threshold is
.16 eV. The cross section for this process has been measured by Lee and
ton?8 and by Crandall, et a129, These two measurements are also shown in

23

re 2, one of these“” may be too large as indicated by McLean, et a130,

THE (0,0) BAND OF THE SECOND POSITIVE BANDS SYSTEM OF N,

The second positive system of N, corresponds to the Caw(;) +> 33"(;‘)
sitions. The life times of the various C3n vibrational levels have been
ured!2:13 and calculatedl0»11, A weighted average14 of many measurements
s a 1ife time of 36.6 nsec for the ;-O state. The transition’s from the

(;-0) state have strong emissions at 3371A, 35772 and 3805A which
espond to the (0,0), (0,1) and (0,2) bands, respectively. Using the
ck-Condon ictots31 for the (0,0) transitions and the life time of the
0) state one obtains a transition rate of 1.22x107 secl for the (0,0)
sitions at 3371A.

1 THE QUENCHING OF N,(C,v=0)

3 .
The C 7 (v=0) state is quenched in collisions with N, and 0, according to

following two processes.
3 »
Np[C m(v=0)] + Np» N, + N, (22)
3 -
Nz[C ﬂ(v-O)] + 02 * N + 0p (23)

rate coefficient for these reactions have been measured in nitrogen and

by Mitchellls, Millett, et 3132, Albugues, et 3133 and Brocklehurst and

lngl6. These measured data are summarized in Table 1I.
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Table II:

3 »
Quenching Coefficient for C n(v=0) in Units of 10'11cm3/sec.

Ref. 15 Ref. 16 Ref. 32 Ref. 33
Ny (1.12 = .143) (1.17 + 0.137) (1.15 £ .062) (1.15 + 0.062)
0y 31.2 + 0.96 - (29 £ 1.8) 27.9

3 -
A recommended value for quenching of C n (v=0) is 1.12x10711 cm3/sec. As for
0'10

quenching by 0y we recommend a value of 2.9xl cm3/sec after lowering the
values of Ref. 15 by 1.2 and raising the values of Ref. 32 and 33 by 1.2
because of the different life-times utilized in these references compared to
an average life time of 36.5 nsec.

3.2.2 THE EXCITATION PROCESSES OF N, (C, v=0)

The upper level of the second positive band system, Caw, is excited by
electron impact from the ground state of Ny. The cross section for the
excitation of the C-state has been measured and calculated by numerous
investigators, see Ref. 34 for details. Since the excitation is a transition
from a singlet, 12, to a triplet, 3n , state, it is sharply peaked near the
excitation threshold and varies as ~ E‘."3 where E is the energy of the incident
electron. In Figure 3 we show the emission cross section for the (0,0)
transition at 3371A as measured by Imami and Borst35.

The excitation threshold for the csw (;-0) is ~ lleV and in a plasma it
is generally excited by the secondary and the plasma electrons which also
excite other triplet status of Ny, e.g. A?t and Baw states. Therefore, the
effects of excitations from the A + B + C state should be investigated and may

become appreciable, depending on the state of the plasma. Furthermore,

collisions with excited states i.e. NQ(C) with Né(C), Nz(B) and NZ(A) may

10
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deplete the C-state as do the superelastic collisions with low energy
electrons. In a cold plasma and at pressures where N4+ predominates, the
dissociative recombination of ﬁ4+ may lead to the population of the C-state.
R. Hill36 has reported that 32 of this dissociative recombination results in
the population of the C (;-O) .

In terms of what other processes may affect the emission at 33714, it
should be noted that this band is a well known laser. It was first discovered
by Heard (1963) and has been investigated throughly in pure nitrogen, where
excitation occurs by electron beans38 and in electric discharges with a fast

39’40. lLasing action has also been observed in air®1,42 gpngd

current rise time
under atmospheric conditions. Since this laser is a superradiant, stimulated

emission also affects the population density of the v=0 gtate and hence its

emission.
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